Computer Vision Lead @ Lily AI. Former Director AI Science @ Target, Principal Scientist @ Best Buy, professor of ECE @ Wayne State, alum of iiD @ Duke and ECE @ Rice. Working in machine/deep learning, computer vision, and NLP.
View My GitHub Profile
Journal publications
- M. Nokleby, H. Raja, W. U. Bajwa, “Scaling-up Distributed Processing of Data Streams for Machine Learning,” accepted to the Proceedings of the IEEE.
- M. Nokleby and W. U. Bajwa, “Stochastic Optimization from Distributed, Streaming Data in Rate-limited Networks,” IEEE Transactions on Signal and Information Processing over Networks, March 2019.
- N. Michelusi, M. Nokleby, U. Mitra, R. Calderbank, “Multi-scale Spectrum Sensing in 5G Cognitive Networks,” IEEE Transactions on Communications, Dec. 2018.
- I. Jindal and M. Nokleby, “Classification and Representation via Separable Subspaces: Performance Limits and Algorithms,” IEEE Journal of Selected Topics in Signal Processing, Oct. 2018.
- N. Ferdinand, B. Kurkoski, M. Nokleby, B. Aazhang, “Low-Dimensional Shaping for High-Dimensional Lattice Codes,” IEEE Transactions on Wireless Communications, Nov. 2017.
- M. Nokleby, B. Aazhang, “Cooperative Compute-and-Forward,” IEEE Transactions on Wireless Communications, vol. 15, no. 1, Jan. 2016.
- M. Nokleby, M. R. D. Rodrigues, R. Calderbank, “Discrimination on the Grassmann Manifold: Fundamental Limits of Subspace Classifiers,” IEEE Transactions on Information Theory, vol. 61, no. 4, April 2015.
- N. Ferdinand, M. Nokleby, B. Aazhang, “Low-Density Lattice Codes for Full-Duplex Relay Channels,” IEEE Transactions on Wireless Communications, vol. 14, no. 4, April 2015.
- M. Nokleby, W. U. Bajwa, R. Calberbank, B. Aazhang, “Toward Resource-Optimal Consensus over the Wireless Medium,” IEEE Journal of Special Topics in Signal Processing, vol. 7, no. 2, Apr. 2013.
- M. Nokleby, W. Stirling, “Attitude Adaptation in Satisficing Games,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 6, Dec. 2009.
- M. Nokleby, A. L. Swindlehurst, “Bargaining and the MISO Interference Channel,” EURASIP Journal on Advances in Signal Processing, vol. 2009, Article ID 368547.
- W. C. Stirling, M. S. Nokleby, “Satisficing Coordination and Social Welfare for Robotic Societies,” International Journal of Social Robotics, vol. 1, no. 1, Jan. 2009.
Conference publications
- L. Polania, M. Flores, M. Nokleby, Y. Li, “Learning Furniture Compatibility with Graph Neural Networks,”, CVPR Workshops, Jun. 2020.
- I. Jindal, M. Nokleby, D. Pressel, X. Chen, “A Nonlinear, Noise-aware, Quasi-clustering Approach to Learning Deep CNNs from Noisy Labels” CVPR Workshop on Uncertainty and Robustness in Deep Learning, Long Beach, CA, 2019.
- I. Jindal, M. Nokleby, D. Pressel, and B. Lester, “An Effective Label Noise Model for DNN Text Classification,” Conference of the North American Chapterof the Association for Computational Linguistics, Minneapolis, MN, June 2019.
- N. Ferdinand, S. Draper, H. Al-Lawati, M. Nokleby, “Anytime Minibatch: Exploiting Stragglers in Online Distributed Optimization,” International Conference on Learning Representations, New Orleans, LA, May 2019.
- P. Farajiparvar, A. Beirami, M. Nokleby, “Information Bottleneck Methods for Distributed Learning,” Allerton Conference, Monticello, IL, Nov. 2018.
- I. Jindal, M. Nokleby, “Performance Limits on the Classification of Kronecker-Structured Models,” IEEE Symposium on Information Theory, Aachen, Germany, June 2017.
- N. Michelusi, M. Nokleby, U. Mitra, R. Calderbank, “Multi-scale Spectrum Sensing in Small- Cell mm-Wave Cognitive Wireless Networks,” IEEE International Conference on Communications, Paris, France, May 2017.
- I. Jindal, M. Nokleby, X. Chen, “Learning Deep Networks from Noisy Labels with Dropout Regularization,” IEEE International Conference on Data Mining, Barcelona, Spain, Dec. 2016. [20% acceptance rate]
- M. Nokleby, A. Beirami, R. Calderbank, “Rate-distortion Bounds on Bayes Risk in Supervised Learning,” IEEE International Symposium on Information Theory, Barcelona, Spain, July 2016.
- N. Ferdinand, M. Nokleby, B. Aazhang, “Voronoi Constellations for High-dimensional Lattice Codes,” IEEE International Symposium on Information Theory, Barcelona, Spain, July 2016.
- N. Michelusi, M. Nokleby, U. Mitra, R. Calderbank, “Dynamic Spectrum Estimation with Minimal Overhead via Multiscale Information Exchange,” IEEE GLOBECOM, San Diego, CA, Dec. 2015.
- M. Nokleby, A. Beirami, R. Calderbank, “A Rate-distortion Framework for Supervised Learning,” IEEE Machine Learning for Signal Processing Workshop, Boston, MA, Sept. 2015.
- N. Ferdinand, M. Nokleby, B. Kurkoski, B. Aazhang, “MMSE Scaling Enhances Performance in Practical Lattice Codes,” Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, November 2014.
- M. Nokleby, M. R. D. Rodrigues, R. Calderbank, “Discrimination on the Grassmann Manifold: Fundamental Limits of Subspace Classifiers,” IEEE International Symposium on Information Theory, Honolulu, Hawaii, July 2014.
- M. Nokleby, M. R. D. Rodrigues, R. Calderbank, “Information-Theoretic Criteria for the Design of Compressive Subspace Classifiers,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Florence, Italy, May 2014.
- M. Nokleby, W. U. Bajwa, “Resource Tradeoffs in Distributed Subspace Tracking over the Wireless Medium,” IEEE Global Conference on Signal and Information Processing, Austin, TX, December 2013.
- M. Nokleby, M. R. D. Rodrigues, R. Calderbank, “Information-theoretic Limits on the Classification of Gaussian Mixtures: Classication on the Grassmann Manifold,” IEEE Information Theory Workshop, Seville, Spain, September 2013.
- M. Nokleby, B. Nazer, “Amplify-and-Compute: Function Computation in Layered Networks,” IEEE International Symposium on Information Theory, Istanbul, Turkey, July 2013.
- N. S. Ferdinand, M. Nokleby, B. Aazhang, “Low-Density Lattice Codes for the Relay Channel,” IEEE International Conference on Communications, Budapest, Hungary, June 2013.
- M. Nokleby, W. U. Bajwa, R. Calderbank, B. Aazhang, “Toward Resource-Optimal Averaging Consensus over the Wireless Medium,” Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2012.
- M. Nokleby, B. Nazer, B. Aazhang, “Relay Computation: Managing Interference with Structure and Cooperation,” Allerton Conference, Monticello, IL, October 2012.
- M. Nokleby, B. Nazer, B. Aazhang, N. Devroye, “Relays that Cooperate to Compute,” International Symposium on Wireless Communication Systems, Paris, France, Aug. 2012.
- M. Nokleby, W. U. Bajwa, R. Calderbank, B. Aazhang, “Hierarchical Averaging over Wireless Sensor Networks,” International Conference on Acoustics, Speech, and Signal Processing, Kyoto, Japan, March 2012.
- M. Nokleby, B. Aazhang, “Unchaining from the Channel: Cooperative Computation over Multiple-access Channels,” IEEE Information Theory Workshop, Paraty, Brazil, October 2011.
- M. Nokleby, W. U. Bajwa, R. Calderbank, B. Aazhang, “Gossiping in Groups: Distributed Averaging over the Wireless Medium,” Allerton Conference, Monticello, IL, September 2011.
- M. Nokleby, B. Aazhang, “Cooperative Computation in Wireless Networks,” IEEE International Symposium on Information Theory, St. Petersburg, Russia, July 2011.
- M. Nokleby, B. Aazhang, “Lattice Coding over the Relay Channel,” IEEE International Conference on Communications, Kyoto, Japan, June 2011.
- M. Nokleby, B. Aazhang, “User Cooperation for Energy-efficient Cellular Communications,” IEEE International Conference on Communications, Cape Town, South Africa, May 2010.
- M. Nokleby, A. L. Swindlehurst, Y. Rong, Y. Hua, “Cooperative Power Scheduling for Wireless MIMO Networks,” IEEE GLOBECOM, Washington, DC, Nov. 2007.
- M. S. Nokleby, W. C. Stirling, “Attitude Adaptation in Satisficing Games,” IEEE Symposium on Foundations of Computational Intelligence, Honolulu, HI, Apr. 2007.
- M. S. Nokleby, W. C. Stirling, “The Stag Hunt: A Vehicle for Evolutionary Cooperation,” IEEE World Congress on Computational Intelligence, Vancouver, BC, Jul. 2006.
- J. C. Hill, M. S. Nokleby, J. K. Archibald, R. L. Frost, W. C. Stirling, “Cooperative Graph Search by a System of Autonomous Agents,” IEEE International Conference on Systems, Man, and Cybernetics, Oct. 2005.
Book Chapters
- M. R. D. Rodrigues, M. Nokleby, F. Renna, R. Calderbank, “Compressive Classification: Where Wireless Communications Meets Machine Learning,” in Compressed Sensing and its Applications, Springer, 2015.
- M. Nokleby, G. Middleton, B. Aazhang, “Cross-Layer Cooperative Communication in Wireless Networks,” in Jerry Gibson (Ed.) Mobile Communications Handbook, CRC Press, Boca Raton, FL., 2011.
Theses
- M. Nokleby, “Cooperative Strategies for Near-Optimal Computation in Wireless Networks,” Ph.D. Thesis, Rice University, Houston, TX, Nov. 2012.
- M. Nokleby, “Satisficing Theory and Non-cooperative Games,” Master’s Thesis, Brigham Young University, Provo, UT, Apr. 2008.